27.3 Gas Immersion Laser Doping (GILD)
 – Michael O. Thompson, T. W. Sigmon
 and Patrick M. Smith 700
27.3.1 Theory of Operation 700
27.3.2 GILD Equipment and Sample Preparation 701
27.3.3 Laser Sources 701
27.3.4 Gas Sources 702
27.3.5 Process Monitoring and Calibration 702
27.3.6 Doping Profiles 703
27.3.7 Wafer Throughput 704
Table of Contents

21.5 Deep Ultraviolet Laser Photolithography
 – Timothy A. Brunner 629
21.5.1 Overview 629
21.5.2 High Resolution Lithography 630
21.5.3 Deep Ultraviolet Lithography Issues 632

Chapter 22 Flat Panel Display 635
22.0 Introduction 635
22.1 Repair – Floyd R. Pothoven 635
 22.1.1 Short Removal 635
 22.1.2 Open Repair 636
22.2 Marking – Floyd R. Pothoven 638
22.3 Laser Patterning Indium Tin Oxide Coated Flat Panel Displays – Rodney Waters and Terry Pothoven 637
 22.3.1 Nature of Indium Tin Oxide 637
 22.3.2 Maskless Pattern Generation 637
 22.3.3 Laser Choices 637
 22.3.4 Laser Cutting 638
22.4 Annealing of Thin-Film Transistors – Heinrich Endert and Dirk Basting 638

Chapter 23 High-Temperature Superconductors 641
23.0 Introduction 641
 23.1.1 Targets and Ablation 641
 23.1.2 Appropriate Lasers and Systems 642
 23.1.3 Film Growth 642
23.2 Results of HTSC Deposition – Quanxi Jia 644
 23.2.1 Characterization 644
 23.2.2 Comparison with Other Techniques 646
23.3 Laser Treatment of HTSC Films – Emil N. Sobol 647
 23.3.1 Modification 648
 23.3.2 Polishing of Thin HTSC Films 650

Chapter 24 Laser Produced Microstructures 651
24.1 Basic Laser Microstructuring Procedures – J. J. Dubowski 651
 24.1.0 Introduction 651
 24.1.1 Microstructuring by Laser Direct Ablation 651
 24.1.2 Microstructuring by Laser Etching 652
24.2 Other Methods of Laser Microstructuring – J. J. Dubowski 655
 24.2.1 Laser-LIGA Processing 655
 24.2.2 Laser Microstructuring of Glass 655
 24.2.3 Laser Microstructuring of Semiconductors 657

Chapter 25 Electronic Packaging: Electrical Interconnects 661
25.0 Introduction 661
25.1 Via Drilling – Mark D. Owen 661
 25.1.1 Lasers for Via Drilling 661
25.1.2 Optical Configurations 662
25.1.3 Applications and Results 663
25.2 Bonding/Soldering 665
 25.2.1 Laser Tape Automated Bonding (TAB) – James Hayward 665
 25.2.2 Laser Reflow Soldering – Gary M. Freedman 667
25.3 Wirestripping 672
 25.3.0 Introduction 672
 25.3.1 Important Parameters in Laser Wirestripping – James H. Brannon and Andrew C. Tam 672
 25.3.2 Lasers for Wirestripping – James H. Brannon and Andrew C. Tam 673
 25.3.3 Wirestripping Procedures – Ronald D. Schaeffer 675

Chapter 26 Electronic Packaging: Package Sealing and Ceramic Processing 677
26.0 Introduction 677
26.1 Package Welding – Phillip W. Fuerschbach 677
 26.1.0 General Considerations 677
 26.1.2 Weld Schedule Development 679
 26.1.3 Process Monitoring 682
26.2 Cutting and Scribing of Substrates – William H. Shiner and Steven R. Maynard 684
 26.2.0 Introduction 684
 26.2.1 Laser Selection 684
 26.2.2 Process Parameters 684
 26.2.3 Pulse Parameters 685
 26.2.4 Optical Considerations 686
 26.2.5 Assist Gas and Nozzle Configuration 686
 26.2.6 Hardware Considerations 687
 26.2.7 Comparison of Scribing and Cutting 687
 26.2.8 Laser Scribing Results – John F. Ready 687
26.3 Hole Drilling in Ceramics 688
 26.3.0 Introduction 688
 26.3.1 Advantages and Laser Choice – Ronald D. Schaeffer 688
 26.3.2 Procedures and Results – William H. Shiner and Steven R. Maynard 689

Chapter 27 Film Deposition and Doping 691
27.1 Thin Film Deposition – Ying Tsui 691
 27.1.1 Laser Chemical Vapor Deposition 691
 27.1.2 Coatings made by LCVD 693
 27.1.3 Direct Write Processing using LCVD 694
 27.1.4 Pulsed Laser Deposition 695
27.2 Deposition of Thick Films of Electronic Ceramics – D. B. Chrissey, J. S. Horwitz, P. C. Dorsey and L. A. Knauss 697
Handbook of Laser Materials Processing

Chapter 16 Laser Materials Processing

16.5.1 Material Properties
16.5.2 Machine Variables
16.6 Coating of Rapid Tools by Pulsed Laser Deposition – Larry R. Dosser
16.7 Adaptation of RP Technology to the Manufacture of Die Casting Tools – Peter J. Hardro
16.8 Table: Comparison of Rapid Prototyping Systems – Peter J. Hardro

Chapter 17 Trimming

17.0 Introduction
17.1 Basics of Laser Trimming – Rodger Dwight
17.1.1 Physical Processes – Rodger Dwight
17.1.2 Overview of a Laser Trimming System – Rodger Dwight
17.1.3 Types of Laser Trims – Rodger Dwight
17.1.4 Appropriate Lasers – Rodger Dwight
17.2 Trimming Techniques – Philip DeLuca
17.2.1 Thick-Film Trimming – Philip DeLuca
17.2.2 Thin Film on Ceramic Laser Trimming – Philip DeLuca
17.2.3 Chip Resistor Laser Trimming – Philip DeLuca
17.2.4 Thin Film on Silicon Resistor Trimming – Philip DeLuca
17.2.5 Interference Effects – Yunlong Sun

Chapter 18 Laser Marking/Branding

18.0 Introduction
18.1 Package Marking and Branding – Donald V. Smart and Jose Downes
18.1.1 Laser Marking in Production
18.1.2 The Marking Process
18.1.3 Mark Quality Criteria
18.2 Wafer Serialization – Jim Scaroni, Jerry Becker and Terry McKee
18.2.1 Techniques
18.2.2 Results
18.3 Marking of Electronic Components – Terry McKee

Chapter 19 Link Cutting/Making

19.1 Basics of Link Processing with Lasers
19.1.0 Introduction – Donald V. Smart
19.1.1 Basics of Link Cutting – John F. Ready
19.1.2 Memory Repair Goals – Donald V. Smart
19.1.3 Processing Concerns – Donald V. Smart
19.1.4 Lasers for Link Cutting – Donald V. Smart
19.1.5 Positioning Systems – Donald V. Smart
19.1.6 Optics – Donald V. Smart
19.1.7 Pulse Control – Donald V. Smart

Chapter 20 Repair

20.1 Repair Needs – Thomas A. Wassick
20.2 Substrate Repair – Thomas A. Wassick
20.2.1 Repair of Shorts
20.2.2 Repair of Opens
20.3 Laser-Based Photomask Repair – John F. Ready

Chapter 21 Applications in Photolithography

21.1 Overview – J. J. Dubowski
21.2 Laser Sources for Microlithography Exposure Tools – Toshihiko Ishihara
21.2.1 Excimer Lasers – Toshihiko Ishihara
21.2.2 Diode Pumped Harmonic Nd:YAG Lasers – Roy D. Mead
21.3 Advantages of Laser Microlithography Compared to Other Sources – John J. Shamaly
21.4 Laser-Based Photolithography System Issues – John J. Shamaly
Table of Contents

13.4 Aerospace Applications – Robert T. Brown 496
 13.4.1 Hole Requirements 496
 13.4.2 Laser Type 496
 13.4.3 Typical Focus-Head Arrangement 497
 13.4.4 Percussion Drilling 497
 13.4.5 Trepan Drilling 498
13.5 Ultrashort-Pulse Laser Machining – M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, and J. A. Sefcik 499
 13.5.0 Introduction 499
 13.5.1 Dielectrics 499
 13.5.2 Metals 503
13.6 Comparison With Other Technologies – Todd J. Rockstroh 508
 13.6.1 Consideration of Quantity of Holes Drilled 508
 13.6.2 Large Diameter Holes > 0.025 mm (0.001 in.) 509
 13.6.3 Small Diameter Holes < 0.025 mm (0.001 in.) 510
 13.6.4 Laser Costs and Other Factors 511
 13.6.5 Summary 512

Chapter 14 Balancing 513
14.1 Basics of Balancing – Hatto Schneider 513
 14.1.0 Introduction 513
 14.1.1 Conditions for Balancing 513
 14.1.2 Balancing Procedures 514
 14.1.3 Balancing Process 514
 14.1.4 Example: A Typical Balancing Task 515
14.2 Laser Balancing Procedures – Michael Martin 515
 14.2.0 Introduction 515
 14.2.1 Advantages/Limitations of Laser Balancing 516
 14.2.2 Balancing Systems 516
14.3 Some Applications of Laser Balancing – Hatto Schneider 518
 14.3.1 Timing Wheel Balancing 518
 14.3.2 Clutch Disk Balancing 519
 14.3.3 Frequency Spindle Balancing 519
 14.3.4 Other Applications 520

Chapter 15 Marking 521
15.1 Basic Principles – Terry McKee 521
15.2 Materials – Terry McKee 522
15.3 Appropriate Lasers 525
 15.3.1 CO2 Lasers – Robert K. Brimacombe 525
 15.3.2 Nd:YAG Lasers – Martin Matthews 527
 15.3.3 Excimer Lasers for Marking – Heinrich Endert and Dirk Basting 528
15.4 Dot Matrix Marking – Andrew John Chambers 529
 15.4.1 Techniques 529
 15.4.2 Results 530
15.5 Engraving – Peter Becher, Phil DeBoer and Arlene Zdrazil 530
 15.5.1 Techniques 530
 15.5.2 Lasers 531
 15.5.3 Surface Effects 532
15.5.4 Beam Motion Systems 532
15.5.5 Masking 532
15.5.6 Engraving Recommendations 533
15.6 Image Micromachining – Brian Norris 534
 15.6.1 Techniques 534
 15.6.2 Results 534
15.7 Applications – Terry McKee 535
 15.7.1 CO2 Lasers – Terry McKee 535
 15.7.2 Nd:YAG Lasers – Terry McKee 535
 15.7.3 Excimer Lasers – Heinrich Endert and Dirk Basting 536
15.8 Comparison with Other Techniques – Terry McKee 537

Chapter 16 Rapid Prototyping 541
16.0 Introduction and Glossary – Terry Feeley and Paul F. Jacobs 541
16.1 Basics of Laser-Based Rapid Prototyping – Allan Lightman 542
 16.1.1 Rapid Prototyping: An Overview 542
 16.1.2 Lasers Parameters for RP 542
 16.1.3 Scanning Exposure Factors 543
16.2 Stereolithography 545
 16.2.1 The Stereolithography Process – Paul F. Jacobs 545
 16.2.2 Materials for Stereolithography – Stephen D. Hanna 548
 16.2.3 Lasers for Stereolithography – Kenneth G. Ibbs 550
 16.2.4 Stereolithography in Product Development – Thomas J. Mueller 552
16.3 Selective Laser Sintering 554
 16.3.1 The Selective Laser Sintering Process – Brent Stucker 554
 16.3.2 Materials for SLS – Sundar V. Atre and Randall M. German 556
 16.3.3 Lasers for Selective Laser Sintering – Damien F. Gray 557
 16.3.4 Directed Light Fabrication – Gary K. Lewis 559
16.4 Laminated Object Manufacturing 564
 16.4.1 The LOM Process – Sung S. Pak 564
 16.4.2 Applications – Sung S. Pak 565
 16.4.3 Laser Cutting-Based Rapid Prototyping Options for Metal and Ceramic Components – Curtis W. Griffin and Alair Griffin 566
16.5 CAM-LEM Processing of Ceramic and Metal Parts – James D. Cawley 567
 16.5.0 Introduction 567
11.4.11 Laser-Welded Tailored Blanks
 – Dave F. Farson 414
11.4.12 Automotive Applications
 – Andreas Gebhardt 417
11.5 Comparison of Laser Welding to Other Welding Technologies 418
 11.5.1 Alternate Welding Technologies
 – Geoff J. Shannon 418
 11.5.2 Key Aspects of Comparison
 – Geoff J. Shannon 421
 11.5.3 Laser Welding Comparisons
 – Dan Gnanamuthu 423
 11.5.4 Comparison of Welding Technology Results – David Havrilla 423

Chapter 12 Laser Cutting 425
 12.1 Basic Description of Laser Cutting
 12.1.1 Cutting Processes – Dirk Petring 425
 12.1.2 Power Balance – Dirk Petring 428
 12.1.3 Appropriate Lasers – Dirk Petring 431
 12.1.4 Gas Assist Techniques – Dirk Petring 431
 12.1.5 Cutting of Complex Shapes
 – Dirk Petring 432
 12.1.6 Post-Cutting Operations – Dirk Petring 433
 12.1.7 Polarization Effects in Laser Cutting: Basics
 – Flemming O. Olsen 433
 12.1.8 Control of Beam Polarization Effects
 in Cutting – John Powell 436
 12.2 Laser Cutting of Metals
 12.2.1 The Metal Cutting Process
 – Leonard Migliore 437
 12.2.2 Characteristics of Laser-Cut Edges
 – Leonard Migliore 438
 12.2.3 Laser Cutting of Specific Metals
 – Leonard Migliore 439
 12.2.4 CO₂ Laser Cutting of Metals
 – John Powell 439
 12.2.5 Nd:YAG Laser Cutting – John Powell
 Thickness Versus Cutting Speed
 – David Havrilla 446
 12.2.6 Microcutting of Metals with Pulsed Nd:YAG Lasers – Hansjoerg Rohde 448
 12.2.7 Cutting of Metals with Other Lasers
 Cutting with a CO Laser
 – Tomoo Fujioka 450
 Cutting with a Chemical Oxygen-Iodine Laser
 – William P. Latham and Aravinda Kar 453
 Cutting with Photolytic Iodine Lasers
 – Philip R. Cunningham and L. A. (Vern) Schlie 453
 12.3 Laser Cutting of Nonmetals 456
 12.3.1 Cutting Mechanisms and Cut Quality
 – John Powell 456

12.3.2 CO₂ Laser Cutting
 – Volodymyr S. Kovalenko 456
12.3.3 Cutting of Nonmetals with Nd:YAG Lasers
 – John Powell
 Nd:YAG Laser Cutting Data
 – Volodymyr S. Kovalenko 460
12.3.4 Cutting Jewelry Materials
 – David M. Marusa 462

12.4 Costs of Laser Cutting 463
 12.4.1 Conventional CO₂ Laser Cutting System
 – David Havrilla 463
 12.4.2 Conventional Nd:YAG Laser Cutting System
 – David Havrilla 463

12.5 Comparison of Laser Cutting with Other Technologies 464
 12.5.1 Advantages and Drawbacks of Laser Cutting
 – David Havrilla 464
 12.5.2 Comparison of CO₂ Laser Cutting with Other Profiling Techniques – John Powell 464
 12.5.3 Advantages and Limitation of Laser Cutting of Nonmetals – Volodymyr S. Kovalenko 470

Chapter 13 Hole Drilling 471
 13.1 Basic Description of Laser Drilling
 13.1.1 Surface Reflectivity – Xiangli Chen 471
 13.1.2 Thermal Properties – Xiangli Chen 472
 13.1.3 Physical Processes: Melting, Vaporization, Flushing, Percussion – Xiangli Chen 473
 13.1.4 Appropriate Lasers: Power/Irradiance, Pulse Duration – Xiangli Chen 473
 13.1.5 Percussion Drilling and Trepanning
 – Dana Elza and Steven R. Maynard 474
 13.2 Drilling of Metals 474
 13.2.0 Introduction 474
 13.2.1 Nd:YAG Laser Drilling
 – Hansjoerg Rohde 475
 13.2.2 CO₂ Lasers for Metal Drilling
 – Marshall G. Jones 479
 13.2.3 CO₂ Laser Drilling – Hansjoerg Rohde 479
 13.2.4 Drilling with Copper Vapor Lasers
 – Roland Mayerhofer and Hans Wilhelm Bergmann 479
 13.2.5 Applications of Copper Vapor Laser Drilling
 – Richard Slagle 483
 13.3 Drilling of Nonmetals 484
 13.3.1 General Considerations – Dana Elza and Steven R. Maynard 484
 13.3.2 Nd:YAG Laser Drilling – Suwas Nikumb 484
 13.3.3 CO₂ Laser Drilling – Dana Elza and Steven R. Maynard 490
 13.3.4 Excimer Laser Drilling – Heinrich Endert and Dirk Basting 491
 13.3.5 Copper Vapor Laser Drilling – Roland Mayerhofer and Hans Wilhelm Bergmann 494
Table of Contents

10.2.5 Joint Design: Configurations and Tolerances – Dave F. Farson 318
10.2.6 Joint Design: Choice – Thomas R. Kugler 320
10.2.7 Elements of Quality – Thomas R. Kugler 320
10.2.8 Processing Gases – Joachim Berkmanns 322
10.2.9 Guidelines – Dave F. Farson 325

10.3 Laser Welding Results 325
10.3.1 Nd:YAG Laser Welding – George Chryssolouris and Stefanos Karagiannis 325
10.3.2 Nd:YAG Laser Welding Guidelines – David Havrilla 334
10.3.3 Nd:YAG Laser CW Seam Welding of Common Materials – Dale U. Chang 338
10.3.4 Nd:YAG Pulsed-Seam Welding – Thomas R. Kugler 339
10.3.5 Spot Welding with Pulsed Nd:YAG Lasers – Hansjoerg Rohde 342
10.3.6 Microjoining with Nd:YAG Lasers – Joseph J. Kwiatkowski 344
10.3.7 Conduction Welding with CO₂ Lasers – John F. Ready 347
10.3.8 Welding with Low Power CO₂ Lasers – John F. Ready 348
10.3.9 Welding with Diode Lasers – Bodo Ehlers 348
10.3.10 Welding with Photolytic Iodine Lasers (PILS) – Philip R. Cunningham and L. A. (Vern) Schlie 351

10.4 Materials Issues 352
10.4.1 Tabulation of Materials and Weldability – R. F. Duhamel 352
10.4.2 Welding of Dissimilar Materials – Kevin J. Ely 354

10.5 Comparison of Laser Welding with Other Technologies 357
10.5.1 Advantages/Limitations – Vivian E. Merchant 357
10.5.2 Economic Considerations – Vivian E. Merchant 358
10.5.3 Comparison of Welding Results – George Chryssolouris and Stefanos Karagiannis 359

Chapter 11 Penetration Welding 361
11.0 Introduction – John F. Ready 361
11.1 Description of Penetration Welding 361
11.1.1 The Deep Penetration Process – Dan Gnanamuthu 361
11.1.2 Motion of the Keyhole – John F. Ready 363
11.1.3 Penetration – John F. Ready 363
11.1.4 Lasers for Penetration Welding – John F. Ready 364
11.1.5 Melting Efficiency – John F. Ready 364
11.2 Welding Procedures - Conrad M. Banas 365
11.2.1 Laser Choice 365
11.2.2 Optics 366
11.2.3 Focus Position 367
11.2.4 Surface Conditions 368
11.2.5 Joint Design 368
11.2.6 Edge Preparation 369
11.2.7 Fixturing 369
11.2.8 Shielding and Plasma Control 370
11.2.9 Preheating 372
11.2.10 Spatter Control 372
11.2.11 Process Monitoring Systems 373
11.2.12 Post Treatment 373
11.2.13 Filler Material Considerations 374

11.3 Welding Data Summary 375
11.3.1 High-Power Laser Welding of Common Materials – Keng H. Leong and Paul G. Sanders 375
11.3.2 CO₂ Laser CW Seam Welding of Common Materials; Conditions for Penetration Welding – Robert J. Steele 379
11.3.3 CW CO₂ Laser Welding of Common Materials – E. A. Metzbower 381
11.3.4 Pulsed CO₂ Laser Welding of Common Metals – Chris Rickert 383
11.3.5 Nd:YAG CW Welding of Common Materials – C. L. M. Ireland 383
11.3.6 Nd:YAG Laser-Pulsed Welding of Common Materials – David C. Weckman and Hugh W. Kerr 387
11.3.7 Comparison of Penetration Welding with Nd:YAG and CO₂ Lasers – David Havrilla 399
11.3.8 Laser Welding with Filler Wire – Andreas Gebhardt 400
11.3.9 Welding with Other Lasers – Sunichi Sato 404
11.3.10 Operating Costs for Penetration Welding – David Havrilla 407

11.4 Industrial Applications of High-Power Laser Welding 409
11.4.1 Introduction – Geoff J. Shannon 409
11.4.2 Key Aspects – Geoff J. Shannon 409
11.4.3 Welding Thin Sheet Material (< 0.5 mm) – Geoff J. Shannon 411
11.4.4 Sheet Material (1–3 mm) – Geoff J. Shannon 411
11.4.5 Welding Plate Material (4–12 mm) – Geoff J. Shannon 412
11.4.6 Weld Tolerances – Geoff J. Shannon 412
11.4.7 Hybrid Welding – Geoff J. Shannon 413
11.4.8 Weld Testing – Geoff J. Shannon 413
11.4.9 Plastic Welding – Geoff J. Shannon 413
11.4.10 Material Welding Summary – Geoff J. Shannon 414
7.5.4 Residual Deformation
– Leonid F. Golovko 255
7.5.5 Mechanical Characteristics
– Leonid F. Golovko 256
7.5.6 Heat Resistance – Leonid F. Golovko 257
7.5.7 Corrosion Resistance – Leonid F. Golovko 257
7.5.8 Wear Resistance – Vivian E. Merchant 258

7.6 Applications of Heat Treating 258
7.6.1 Steering Gear Assemblies
– David A. Belforte 258
7.6.2 Diesel Engine Cylinder Liners
– David A. Belforte 259
7.6.3 Turbine Blade Hardening – John F. Ready 260

7.7 Comparison with Other Technologies
– Vivian E. Merchant 260
7.7.1 Advantages/Disadvantages 260
7.7.2 Economic Considerations 261

Chapter 8 Surface Treatment: Glazing, Remelting, Alloying, Cladding, and Cleaning 263
8.0 Introduction – John F. Ready 263
8.1 Rapid Melting 263
8.1.1 Melting Kinetics – John F. Ready 263
8.1.2 Absorption Mechanism
– Menachem Bamberger 264
8.1.3 Effects of Convection
– Menachem Bamberger 264
8.1.4 Temperature Distribution in the Melt
– Menachem Bamberger 266
8.2 Rapid Solidification and Microstructure
– Menachem Bamberger 268
8.2.1 Solidification 268
8.2.2 Temperature Distribution During Cooling 269
8.2.3 Dendrite Spacing 269
8.3 Appropriate Lasers and Optics – Walter J. Swawr 271
8.3.1 Nd:YAG Lasers 271
8.3.2 CO₂ Lasers 271
8.4 Laser Glazing 271
8.4.1 The Glazing Process
– Vivian E. Merchant 271
8.4.2 Rapid Cooling – John F. Ready 272

8.5 Surface Remelting 273
8.5.1 Surface Remelting of Bearings
– Dennis W. Hetzner 273
8.5.2 Melting Cast-Iron Surfaces
– Menachem Bamberger 276

8.6 Surface Alloying 279
8.6.1 Basics of Laser Alloying– John F. Ready 279
8.6.2 Materials Deposition Techniques
– Volodymyr S. Kovalenko 279
8.6.3 Mixing Characteristics
– Volodymyr S. Kovalenko 281
8.6.4 Enhanced Surface Properties
– Volodymyr S. Kovalenko 283

8.7 Surface Cladding – Thomas Aaboe Jensen 284
8.7.0 Introduction 284
8.7.1 Cladding Techniques 284
8.7.2 Feeding Principles 285
8.7.3 Process Characteristics 285
8.7.4 Cladding Characteristics 286
8.7.5 Cladding Materials 286
8.7.6 Process Benefits 286
8.7.7 Process Drawbacks 287
8.7.8 Applications 287
8.7.9 Special Applications 287

8.8 Cleaning 287
8.8.0 Introduction – Martin C. Edelson 287
8.8.1 Surface Cleanings – Martin C. Edelson 287
8.8.2 Contaminant Removal
– Mary Helen McCay 289
8.8.3 Removal of Paint, Dielectric and Other Coatings – Alan E. Hill 293

8.9 Disk Texturing – Ronald D. Schaeffer 297

Chapter 9 Brazing/Soldering 299
9.1 Process Definition – E. Schubert, I. Zerner and G. Sepold 299
9.2 Appropriate Lasers – E. Schubert, I. Zerner and G. Sepold 299
9.3 Beam Manipulation Techniques – E. Schubert, I. Zerner and G. Sepold 300
9.4 Applications and Results – E. Schubert, I. Zerner and G. Sepold 301
9.4.1 Brazing of Steel – E. Schubert, I. Zerner and G. Sepold 301
9.4.2 Brazing of Titanium – E. Schubert, I. Zerner and G. Sepold 302
9.4.3 Joining Of Dissimilar Materials – E. Schubert, I. Zerner and G. Sepold 302
9.4.4 Soldering Applications with Diode Lasers
– Bodo Ehlers 303

Chapter 10 Conduction Welding 307
10.0 Introduction – John F. Ready 307
10.1 Basic Description of Laser Welding 307
10.1.1 Use of Laser Welding – George Chryssolouris and Stefanos Karagiannis 307
10.1.2 Metal Reflectivity – Thomas R. Kugler 308
10.1.3 Thermal Properties of Metals
– Thomas R. Kugler 309
10.1.4 Fusion Front Penetration
– Thomas R. Kugler 310
10.1.5 Thermal Conduction Limitations
– Thomas R. Kugler 313
10.2 Welding Procedures 314
10.2.1 Laser Characteristics – Thomas R. Kugler 314
10.2.2 Optics – Thomas R. Kugler 316
10.2.3 Focus Position – Thomas R. Kugler 317
10.2.4 Surface Conditions – Thomas R. Kugler 318
Table of Contents

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Overview of Laser Materials Processing</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Laser Parameters – Paul Kelley</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Laser Beam Parameters</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Polarization</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Absorption of Laser Energy – John F. Ready</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Reflection</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Absorption</td>
<td>5</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Focusing of Laser Light</td>
<td>5</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Laser Damage</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Laser Configurations – John J. Zayhowski</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Modal Characteristics – John J. Zayhowski</td>
<td>9</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Temporal Behavior – John J. Zayhowski</td>
<td>11</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Survey of Active Media – John J. Zayhowski</td>
<td>13</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Commercial Lasers for Materials Processing</td>
<td>16</td>
</tr>
<tr>
<td>1.4</td>
<td>Laser Systems</td>
<td>17</td>
</tr>
<tr>
<td>1.4.0</td>
<td>Introduction – David A. Belforte</td>
<td>17</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Subsystems – David A. Belforte</td>
<td>17</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Illustrations of Complete Materials Processing Systems – David A. Belforte</td>
<td>19</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Illustrations of Time- and Energy-Sharing Systems – Richard J. Coyle and Ronald M. Gagosz</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Lasers for Materials Processing</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>Introduction – John F. Ready</td>
<td>27</td>
</tr>
<tr>
<td>2.1</td>
<td>Carbon Dioxide Lasers</td>
<td>27</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Basic Principles – Jack Davis</td>
<td>27</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Laser Configurations – Jack Davis</td>
<td>28</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Optics – Jack Davis</td>
<td>32</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Power Sources, Accessories and Controls – Jack Davis</td>
<td>34</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Lifetime, Care and Maintenance – Jack Davis</td>
<td>34</td>
</tr>
<tr>
<td>2.1.6</td>
<td>Laser Gases for CO₂ Laser Resonators – Joachim Berkmanns</td>
<td>35</td>
</tr>
<tr>
<td>2.2</td>
<td>Nd:YAG Lasers – Thomas R. Kugler</td>
<td>37</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Basic Principles</td>
<td>37</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Laser Configurations</td>
<td>38</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Pump Sources</td>
<td>41</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Power Control</td>
<td>42</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Lifetime, Care and Maintenance</td>
<td>42</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Output Beam Quality</td>
<td>42</td>
</tr>
<tr>
<td>2.3</td>
<td>Other Solid State Lasers – Stephen A. Payne</td>
<td>44</td>
</tr>
<tr>
<td>2.4</td>
<td>Excimer Lasers – James Higgins</td>
<td>47</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Basic Principles – James Higgins</td>
<td>47</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Wavelengths – James Higgins</td>
<td>48</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Resonator Configurations – James Higgins</td>
<td>48</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Optical Configurations – James Higgins</td>
<td>49</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Power Sources – James Higgins</td>
<td>49</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Lifetime, Care and Maintenance – James Higgins</td>
<td>49</td>
</tr>
<tr>
<td>2.4.7</td>
<td>Gas for Excimer Lasers</td>
<td>50</td>
</tr>
<tr>
<td>2.5</td>
<td>Other Lasers</td>
<td>52</td>
</tr>
<tr>
<td>2.5.0</td>
<td>Introduction – John F. Ready</td>
<td>52</td>
</tr>
<tr>
<td>2.5.1</td>
<td>CO Lasers – Tomoo Fujioka</td>
<td>52</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Metal Vapor Lasers – Richard Slagle</td>
<td>53</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Ion Lasers – Kurt G. Klavuhn</td>
<td>55</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Diode Lasers</td>
<td>60</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Iodine Lasers</td>
<td>66</td>
</tr>
<tr>
<td>2.5.6</td>
<td>Nonlinear Optical Effects in Crystals – Ratan S. Adhav</td>
<td>69</td>
</tr>
<tr>
<td>2.5.7</td>
<td>Free-Electron Lasers – John F. Ready</td>
<td>78</td>
</tr>
<tr>
<td>2.5.8</td>
<td>X-Ray Lasers – Pierre Jaegle</td>
<td>78</td>
</tr>
<tr>
<td>2.5.9</td>
<td>Ultrafast Lasers for Materials Processing – M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit and J. A. Sefcik</td>
<td>82</td>
</tr>
<tr>
<td>2.6</td>
<td>Water Chiller Considerations for Laser-Cooling Applications – Terry L. Armbruster</td>
<td>83</td>
</tr>
<tr>
<td>2.6.0</td>
<td>Introduction</td>
<td>83</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Capacity of Cooling System</td>
<td>83</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Power Requirements</td>
<td>83</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Chiller System Components</td>
<td>84</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Water Issues</td>
<td>89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>Optics and Optical Systems</th>
<th>91</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>Introduction</td>
<td>91</td>
</tr>
<tr>
<td>3.1</td>
<td>Properties of Laser Beams</td>
<td>91</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Monochromaticity – William P. Latham and Aravinda Kar</td>
<td>91</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Directionality – William P. Latham and Aravinda Kar</td>
<td>91</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Coherence – William P. Latham</td>
<td>91</td>
</tr>
</tbody>
</table>